1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
use crate::{
    util,
    AuthTag,
    lqb,
    ArxKW,
    ArxKwError,
    InvalidLengthError,
    ConstantTimeEq
};

/// The ARX-8-2-4-E variant. Has a key length of 48 bytes and a maximum input length of 64 bytes.
/// See the [`ArxKW`] trait for usage.
pub struct E;
impl E {
    #[must_use]
    #[cfg(not(tarpaulin_include))]
    /// The length in bytes of the secret key used by this variant of ARX-KW
    pub const fn key_length() -> usize {
        48
    }

    #[must_use]
    /// Returns the maximum length in bytes for the input to `G::encrypt`  and `G::decrypt` 
    ///
    /// ---
    /// This is the same for the plaintext input when encrypting and ciphertext input when
    /// decrypting, but is **not** the same for all variants of ARX-KW. Specifically, the *E* and *G*
    /// variants are defined only for plaintext/ciphertext inputs of no more than 512 bits, the length
    /// of a ChaCha Block, whereas *EX* and *GX* do not have this limitation.

    #[cfg(not(tarpaulin_include))]
    pub const fn max_input_length() -> usize {
        64
    }

}

impl ArxKW for E {
    type Key = [u8; Self::key_length()];
    fn encrypt(key: &Self::Key, plaintext: &[u8]) -> Result<(Vec<u8>, AuthTag), ArxKwError> {
        if plaintext.len() > Self::max_input_length() {
            Err(ArxKwError::InvalidLength(InvalidLengthError::UpTo(plaintext.len(), Self::max_input_length())))
        } else {
            let (k1,k2) = array_refs![key,16,32];
            let authentication_tag = util::sip_array_keyed(k1, plaintext);
            let ciphertext = lqb::chacha8_encrypt(k2, authentication_tag.as_ref(), plaintext)?;
            Ok((ciphertext, authentication_tag))
        }
    }
    
    fn decrypt(key: &Self::Key, ciphertext: &[u8], authentication_tag: &AuthTag) -> Result<Vec<u8>, ArxKwError> {
        if ciphertext.len() > Self::max_input_length() {
            Err(ArxKwError::InvalidLength(InvalidLengthError::UpTo(ciphertext.len(), Self::max_input_length())))
        } else {
            let (k1,k2) = array_refs![key,16,32];
            let p_prime = lqb::chacha8_encrypt(k2, authentication_tag.as_ref(), ciphertext)?;
            let t_prime = util::sip_array_keyed(k1, &p_prime);
            if bool::from(t_prime.ct_eq(authentication_tag)) { // Compare AuthTags in constant time
                return Ok(p_prime);
            }
            Err(ArxKwError::BadTags(t_prime, *authentication_tag))
        }
    }
}

#[cfg(test)]
mod tests {
    extern crate hex;
    use anyhow::Result;
    use hex::FromHex;
    use super::{ArxKW,E};
    use crate::{ConstantTimeEq,assert_ct_eq,AuthTag};
    

    /*
     * Tests using the Test Vectors provided in the ARX-KW paper 2020-059 by Sato Shinichi
     */

    #[test]
    fn test_encrypt() -> Result<()> {
        let k = <[u8; 48]>::from_hex("000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f")?;
        let p = <[u8; 32]>::from_hex("deadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeef")?;
        let p_bad = [0xaf; 69];
        let res = E::encrypt(&k, &p_bad);
        assert!(res.is_err());
        let t_expected = AuthTag(<[u8; 16]>::from_hex("c4f21d3b4dbcc566c3a73bbc59790f2f")?);
        let c_expected = <[u8; 32]>::from_hex("e6457d24abaf7c2ebdb91416a18366d31a66db61a4e45c9f42a119c353bb1eb1")?;
        let (c,t) = E::encrypt(&k, &p)?;
        assert_eq!(&c, &c_expected);
        assert_ct_eq!(t, &t_expected);
        Ok(())
    }

    #[test]
    fn test_encrypt_blob() -> Result<()> {
        let k = <[u8; 48]>::from_hex("000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f")?;
        let p = <[u8; 32]>::from_hex("deadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeef")?;
        let blob_expected = <[u8; 48]>::from_hex("c4f21d3b4dbcc566c3a73bbc59790f2fe6457d24abaf7c2ebdb91416a18366d31a66db61a4e45c9f42a119c353bb1eb1")?;
        let blob = E::encrypt_blob(&k, &p)?;
        assert_ct_eq!(blob, &blob_expected);
        Ok(())
    }


    #[test]
    fn test_decrypt() -> Result<()> {
        let c = <[u8; 32]>::from_hex("e6457d24abaf7c2ebdb91416a18366d31a66db61a4e45c9f42a119c353bb1eb1")?;
        let k = <[u8; 48]>::from_hex("000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f")?;
        let t = AuthTag(<[u8; 16]>::from_hex("c4f21d3b4dbcc566c3a73bbc59790f2f")?);
        let p_expected = <[u8;32]>::from_hex("deadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeef")?;
        let p = E::decrypt(&k, &c, &t)?;
        assert_ct_eq!(p, &p_expected);
        Ok(())
    }


    #[test]
    fn test_decrypt_blob() -> Result<()> {
        let k = <[u8; 48]>::from_hex("000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f")?;
        let blob = <[u8; 48]>::from_hex("c4f21d3b4dbcc566c3a73bbc59790f2fe6457d24abaf7c2ebdb91416a18366d31a66db61a4e45c9f42a119c353bb1eb1")?;
        let p_expected = <[u8;32]>::from_hex("deadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeef")?;
        let p = E::decrypt_blob(&k, &blob)?;
        assert_ct_eq!(p, &p_expected);
        Ok(())
    }


    #[test]
    fn test_decrypt_bad() -> Result<()> {
        let k = <[u8; 48]>::from_hex("000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f")?;
        let c = <[u8; 32]>::from_hex("e6457d24abaf7c2ebdb91416a18366d31a66db61a4e45c9f42a119c353bb1eb1")?;
        let c_bad = [0xbb; 69];
        let t = AuthTag(<[u8; 16]>::from_hex("c4f21d3b4dbcc566c3a73bbc59790f2f")?); // good tag
        let res = E::decrypt(&k, &c_bad, &t);
        assert!(res.is_err());
        let t_bad = AuthTag(<[u8; 16]>::from_hex("c4f21d3b4dbcc566c3a73bbc59790fff")?); // last 2 hex digits should be 2f
        let res = E::decrypt(&k, &c, &t_bad);
        assert!(res.is_err());
        Ok(())
    }

    /*
    #[test]
    fn test_encrypt_in_place() -> Result<()> {
        let k = <[u8; 48]>::from_hex("000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f")?;
        let mut buf = <[u8; 32]>::from_hex("deadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeef")?;
        let t_expected = <[u8; 16]>::from_hex("c4f21d3b4dbcc566c3a73bbc59790f2f")?;
        let c_expected = <[u8; 32]>::from_hex("e6457d24abaf7c2ebdb91416a18366d31a66db61a4e45c9f42a119c353bb1eb1")?;
        let t = encrypt_in_place(array_ref![k,0,48], &mut buf)?;
        assert_eq!(&buf, &c_expected);
        assert_eq!(&t.to_vec(), &t_expected);
        Ok(())
    }
    #[test]
    fn test_decrypt_in_place() -> Result<()> {
        let mut buf = <[u8; 32]>::from_hex("e6457d24abaf7c2ebdb91416a18366d31a66db61a4e45c9f42a119c353bb1eb1")?;
        let k = <[u8; 48]>::from_hex("000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f202122232425262728292a2b2c2d2e2f")?;
        let t = <[u8; 16]>::from_hex("c4f21d3b4dbcc566c3a73bbc59790f2f")?;
        let p_expected = <[u8;32]>::from_hex("deadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeef")?;
        decrypt_in_place(&k, &mut buf, &t)?;
        assert_eq!(buf, p_expected);
        Ok(())
    }
    */

}